GEO5
Global Environment Outlook

Environment for the future we want

United Nations Environment Programme
Environment for the future we want
Acknowledgements

This fifth Global Environment Outlook (GEO-5) assessment report is a product of the strong dedication and extraordinary investment of numerous individuals, whose knowledge, expertise and insight helped shape this important body of work. UNEP acknowledges the contributions made by many governments, individuals and institutions to the preparation and publication of this report. A full list of names of individuals and institutions involved in the assessment process is included from pages 498–504. Special thanks are extended to:

High-Level Intergovernmental Advisory Panel

Science and Policy Advisory Board

Data and Indicators Working Group

Coordinating Lead Authors

Scientific Peer-Reviewers (Coordinated by the Earth System Science Partnership)

Outreach Group

GEO-5 Funding

The Governments of Canada, Norway, Republic of Korea, the Netherlands, Sweden, Switzerland and the Gwangju Metropolitan City, Republic of Korea, together with the UNEP Environment Fund, provided the necessary funding for the production of GEO-5 and subsequent outreach activities. Contributions were also provided by GRID-Arendal and the Development Bank of Latin America.

Global Environment Outlook 5

GEO-5 Core Team: Matthew Billot (Head of GEO Unit), Ludgarde Coppens, Volodymyr Demkine, Salif Diop, Peter Gilruth, Jason Jabbour, Fatoumata Keita-Ouane, Josephine Nyokabi Mwangi, Brigitte Ohanga, Nalini Sharma

Regional Coordinating Team: Adel Farid Abdel-Kader, Fouad Abousamra, Silvia Giada, Graciela Metternicht, Charles Sebukeera, Ashbindu Singh, Anna Stabrawa, Frank Turyatunga, Jaap van Woerden, Ronald Witt, Jinhua Zhang

Production Coordination: Jason Jabbour

UNEP World Conservation Monitoring Centre (UNEP-WCMC): Mari Bieri, Satu Glaser, Maxwell Gomera, Abisha Mapendembe, Alison M. Rosser, Jörn Scharlemann, Matt J. Walpole

Global Resources Information Database Centre, Norway (GRID-Arendal): Björn Alfthan, John Crump, Lawrence Hislop, Tiina Kurvits, Thor-Jürgen Greve Løberg, Clever Mafuta, Riccardo Pravettoni, Peter Prokosch, Petter Sevaldsen, Janet Fernandez Skaalvik

GEO-5 E-peer-review System: Herb Caudill, Shane Kunkle

Data Support: Andrea de Bono, Dominique del Pietro, Stefan Schwarzer, Jaap van Woerden

Maps and Graphics: Riccardo Pravettoni (GRID-Arendal), UNEP/GRID-Geneva, Mattias Turini, Nieves López Izquierdo, Audrey Ringler

Editorial Team: Bart Ullstein, Helen de Mattos, Christine Hawkins, Catherine P. McMullen, Jason Jabbour, Jörn Scharlemann

Design and Layout: GRID-Arendal, Ali Cherri

Editorial and Outreach Coordination: Neeyati Patel
Contents

Acknowledgements
- vii

Foreword
- vii

Preface
- xvii

Introduction
- xviii

Part 1: State and Trends of the Environment
- 1
 - Drivers
 - Atmosphere
 - Land
 - Water
 - Biodiversity
 - Chemicals and Waste
 - An Earth System Perspective
 - Review of Data Needs

Part 2: Policy Options
- 231
 - Africa
 - Asia and the Pacific
 - Europe
 - Latin America and the Caribbean
 - North America
 - West Asia
 - Regional Summary

Part 3: Global Responses
- 417
 - Scenarios and Sustainability Transformation
 - Global Responses

The GEO-5 Process
- 489

Acronyms and Abbreviations
- 493

Contributors
- 498

Glossary
- 505

Index
- 520
Figures

Chapter 1: Drivers
The demographic transition ... 7
Urban population, 1950–2050 ... 8
Change in population density, 1990–2005 .. 9
Change in economic output, 1990–2005 ... 10
A simple interpretation of the environmental Kuznets curve 12
Change in meat supply by region, 1960–2007 13
Growth in population, GDP, trade and CO₂ emissions, 1990–2008 ... 19
The transfer of CO₂ emissions between developed and developing countries, 1990–2010 ... 21
The great acceleration after the Second World War 22

Chapter 2: Atmosphere
Impacts of and links between selected substances emitted to the atmosphere .. 33
Trends in temperature change and atmospheric CO₂ concentrations, 1850–2010 ... 37
Temperature change over the 20th century 37
Trends in Arctic sea ice extent in winter and autumn, 1979–2010 38
Trends in fossil fuel emissions, calculated and IPCC scenarios, 1990–2015 ... 39
The emissions gap .. 40
Regional trends in sulphur dioxide emissions, 1850–2050 42
Areas at risk and timeframe for acidification damage in Asia 43
Regional trends in emissions of nitrogen oxides and ammonia, 1850–2050 ... 45
Trends in nitrogen deposition to protected areas, 2000–2030 46
National ambient air quality standards and WHO guidelines for PM₁₀ ... 48
Urban PM₁₀ trends in selected regions and cities, 1993–2009 48
Sources of ozone over polluted regions of the northern hemisphere, 1850 and 2000 ... 49
Regional changes in concentrations of surface ozone, 1960–2000 ... 50
Projected changes in surface ozone concentrations over polluted regions of the northern hemisphere, 2000–2050 51
Consumption of ozone-depleting substances, 1986–2009 51
Reduction of ozone-depleting substances in the stratosphere, 1994–2009 ... 52
Antarctic ozone hole extent, 1980–2010 ... 52
The World Avoided modelled UV index, 1975, 2020 and 2065 53
Leaded petrol phase-out, 2002 and 2011 55
Petrol and blood lead levels in Sweden following the phase-out of lead in petrol, 1976–2004 ... 56
Blood lead levels in the United States following the phase-out of lead in petrol, 1976–2008 ... 56
Projected effects of measures to reduce CO₂, methane and black carbon emissions in relation to a reference scenario 59
Atmospheric brown cloud over part of South Asia 60

Chapter 3: Land
Area in use for cropland and pasture in 2009, by region, and global change between 1960 and 2010 68
Area harvested in 2010 and the change between 2001 and 2010, selected crops ... 70
Average food supply in 2007 and the change between 1998 and 2007, by region ... 71
Change in forest area by region, 1990–2010 72
Global extent of drylands and human-induced dryland degradation ... 74
UNCCD operational objectives and achievements, 2010 75
Changes in Arctic vegetation, 1982–2005 77
Urban expansion in the Pearl River Delta, China, 1990–2009 78
Distribution of the urban population of developing countries, by city size ... 78
Food security and environmental goals for agriculture by 2050 80
Projected changes in sub-Saharan African crop yields due to climate change, 2050 ... 81
Change in global population and in meat, fish and seafood supplies, 1992–2007 ... 82
Clear-cut deforestation in the Brazilian Amazon, 1988–2011 83
Area under cultivation for selected crops in humid tropical countries, 1960–2010 ... 84

Chapter 4: Water
Annual average water scarcity in major river basins, 1996–2005 ... 102
Current and projected water withdrawals by sector, 2000–2050 ... 103
Global annual groundwater depletion, 2000 104
Annual global and regional water footprint, 1996–2005 105
Global irrigation efficiencies, 2000 .. 106
Virtual water imports, exports and flows around the world, 1996–2005 ... 106
People affected by and damages associated with floods and droughts, 1980–2010 ... 107
Global density of medium to large dams 108
Estimated risk of arsenic in drinking water, based on hydrogeological conditions ... 109
Faecal coliform concentrations in rivers near major cities – an indicator of waterborne pathogens, 1990–2011 ... 110
Population without access to improved sanitation compared to MDG target, 1990–2015 ... 111
World hypoxic and eutrophic coastal areas, 2010 112
Trends in organochlorine contamination in selected deep-sea fish species, 1995–2005 ... 113
Threats to water security with and without infrastructure investment, 2000 ... 115
Population without access to improved drinking water, 1990–2015 ... 116
Cholera cases by region, 1989–2009 .. 117
CO₂ concentrations and ocean acidification in the North Pacific, 1960–2010 ... 120
Thermal power and hydropower plant locations and water stress levels in five countries of South and South East Asia..... 121
Progress in the development and implementation of integrated water management plans.......................... 122
Map of 18 regional seas and 64 large marine ecosystems, 2011 ... 124
International river basins, 2000 .. 125

Chapter 5: Biodiversity
Major threats to vertebrates listed as critically endangered, endangered or vulnerable on the IUCN Red List........... 139
Biodiversity indicator trends ... 141
Numbers of vertebrates globally threatened by overexploitation, 2010.. 142
Trends in the state of global fishery stocks, 1950–2006 142
The ecological footprint, 1961–2007 144
Living Planet Index, 1970–2007 .. 145
Red List Indices of species survival for all species of birds, mammals, amphibians and corals, 1980–2010 145
Relationships between biodiversity, ecosystem services and human well-being 146
Red List Indices of species survival for birds and mammals used for food and medicine, 1988–2008 147
Distribution and conservation status of medicinal plant species assessed for the IUCN Red List, by region, 2009 147
Commitments to manage alien invasive species, 1970–2010 ... 151
Extent of nationally designated protected areas, 1990–2010 .. 152
Proportion of each terrestrial ecoregion covered by protected areas, 2011.. 153
Language endangerment as a share of all languages, 2010 ... 155
The number and type of access and benefit-sharing measures, 2011.. 156
Scenarios of species change .. 158

Chapter 6: Chemicals and Waste
Transmission of national reports by Parties to the Basel Convention, 1999–2009 ... 173
Chemical sales by country, 2009 .. 174
Life-cycle analysis of chemicals 176
PCBs in beached plastics .. 177
DDT levels in humans, 1960–2008 179
Trends in two PCBs from air monitoring data at two sites in the northern hemisphere, 1995–2005 179

Chapter 7: An Earth System Perspective
Changes in atmospheric CO₂ concentrations 195
Examples of regime shifts resulting from different drivers and feedbacks .. 198
Observed change in annual mean surface air temperature, 1960–2009 ... 199

Chapter 8: Review of Data Needs
Example of a country snapshot on environment statistics, from Uganda.. 226
National environment statistics programmes and thematic coverage, 2007 .. 228

Chapter 9: Africa
Exposure and vulnerability to floods in sub-Saharan Africa, 1980–2010 .. 235
Food insecurity in selected Southern African cities, 2008–2009 ... 235
Selected strategies from the policy options for strengthening key components of capacity 254

Chapter 10: Asia and the Pacific
Selected climate change policies .. 266
Selected biodiversity policies .. 269
Selected freshwater policies .. 272
Selected chemical and waste policies 276
Selected governance policies ... 278

Chapter 11: Europe
Electricity capacity in the EU-27 from biomass, on-shore wind and photovoltaic sources, 2005–2010 297
Passenger cars and light-duty trucks meeting Euro standards ... 299
Euro-based standards and their adoption in Asia, 1995–2018 .. 300
European sulphur dioxide emission reductions, 1980–2004 .. 301
Complex links between objectives and actors involved in managing the Tisza Basin 303
Agricultural use of nitrogen (N), phosphorous (P) and potassium (K) in Denmark, 1960–2007 304
Varying water tariff structures in selected European countries .. 305
Moving up the waste hierarchy .. 306
A life-cycle approach to resource efficiency 306
Trends in municipal solid waste treatment in the EU, 1995–2008 ... 307
Conservation status of EU habitats and species, 2008..............310
European forest area and status, by region, 2010............... 311

Chapter 12: Latin America and the Caribbean
The core constituents of environmental governance 320
A governance framework for large marine ecosystems 323
Population with access to improved sources of drinking water 326
Population with access to improved sanitation 327
Estimated population density in Latin America and the
Caribbean, 2010 ... 328
Common ground for sustainability 339

Chapter 13: North America
The Great Lakes Basin ... 363
Proposed renewable energy zones, potential transmission
expansion and the growth of wind power in Texas 368

Chapter 14: West Asia
Priorities for action in West Asia.. 376
Domestic water supply and sanitation in West Asia,
1990–2015 .. 377
Primary energy consumption in West Asia, 2004–2008 385
Reclaimed land in Bahrain, 1963–2008 392

Chapter 16: Scenarios and Sustainability Transformation
Conventional world and sustainable world scenarios......... 422
Layers of transformation .. 423
Twin challenge ... 424
Population and income projections in the scenario
literature, 2000–2050 .. 427
Emissions and temperature scenarios 429
Scenarios for sulphur emissions 429
An example of primary energy use and annual change
in CO₂ emissions in sustainable world scenarios 431
Food consumption and child undernourishment under
different scenarios ... 433
Trends in land use, 1970–2050 ... 433
Water withdrawals under different scenarios, 2000–2050 436
Water withdrawals under conventional world and
sustainable world scenarios, 2005–2050 437
Water stress under current conditions and for 2050 under
conventional and sustainable world scenarios 438
Changes in the extent of forest up to 2050 in different
global scenarios, and estimated rates of species loss 439
Options for reducing biodiversity loss by 2050 440
Marine catches with and without a reduction in fishing
effort, by region, 1950–2050 .. 441

Chapter 17: Global Responses
Growth in ratification of environmental treaties,
1971–2011 .. 464
The Environment Fund, 1973–2009 466
GEF portfolio and co-financing allocations by focal area,
1991–2010 .. 468
OECD countries’ aid commitments to UNCCD, CBD and
UNFCCC, 1998–2009 ... 469
Scenarios projecting the impacts of environmental risks
on human development, 1980–2050 470
Boxes

Chapter 1: Drivers
Facilitating the demographic transition through education .. 7
Expressing prosperity beyond GDP .. 11
Greenhouse gas emissions and international trade .. 21
Information and communication technologies:
 a vicious cycle? .. 24
Conclusions of driver-centred thinking .. 26

Chapter 2: Atmosphere
Climate change ... 36
Sulphur pollution .. 41
Atmospheric nitrogen pollution .. 43
Particulate matter .. 46
Tropospheric ozone ... 49
Stratospheric ozone ... 51
Lead in petrol .. 54
Complementary actions to limit near-term climate change
 and improve air quality .. 59
Atmospheric brown clouds ... 60

Chapter 3: Land
Eradicating hunger .. 68
Forests ... 71
Restoring wetlands along the Mississippi .. 79
The Mau Forests complex, Kenya .. 79
Brazil’s forest policy and soy moratorium ... 83
Palm oil expansion and rainforest destruction in Indonesia .. 84
Sustainable dryland management .. 88

Chapter 4: Water
Johannesburg Plan of Implementation Paragraph 26c ... 100
Water scarcity .. 102
Water demand .. 103
Water-use efficiency ... 105
Extreme events ... 107
Dams and river fragmentation ... 108
Groundwater contamination .. 109
Pathogenic contamination ... 110
Nutrient pollution and eutrophication .. 111
Marine litter .. 112
Toxic chemicals ... 113
Ballast water and invasive species ... 114
Water security .. 114
Access to improved water .. 115
Water-related diseases ... 116
Diarrhoea in children in Africa ... 117
Climate change impacts on human security .. 118
Sea level rise .. 119
Ocean acidification ... 119
The Deepwater Horizon oil spill ... 121
The impacts of drought on hydropower production .. 122
Integrated water management ... 122
Competition and conflict ... 125

Chapter 5: Biodiversity
Strategic Plan for Biodiversity 2011–2020 and the Aichi Biodiversity Targets 136
Biodiversity vision: a world in harmony with nature ... 139
Global Biodiversity Outlook .. 140
The ecological footprint: an indicator of the pressures on biodiversity 144
Genetic modification ... 150
Examples of community management ... 154

Chapter 6: Chemicals and Waste
Multilateral environmental agreements and the sound management of chemicals 171
Johannesburg Plan of Implementation (JPOI) (WSSD 2002)
 Paragraph 23 ... 173
Waste in the OECD .. 175
Waste generated on board ship .. 178
Human health, the environment and persistent organic pollutants ... 178
Funding: an ongoing challenge .. 186

Chapter 7: An Earth System Perspective
Examples of Earth System interactions influenced by human activities .. 196
Regime shifts .. 198
Antarctic biodiversity ... 200
The ecological footprint ... 206
Innovative response to a crisis ... 210
The transition to improved governance of the Great Barrier Reef ... 210

Chapter 8: Review of Data Needs
The three principal data gaps on drivers of global environmental change 217
Glacier monitoring in the Himalayas .. 222

Chapter 9: Africa
The Sangha Tri-National Landscape ... 239
Collaborative water management: Organization for the Development of the Senegal River Basin .. 239
A network of managers in the Mediterranean ... 240
Successful pollution management in the Western Indian Ocean .. 242
The Ambatovy Business and Biodiversity Offsets Programme (BBOP), Madagascar 242
Mozambique: A pilot project in the voluntary carbon market ... 243
Action and commitment at regional and national levels ... 245
Sustainable land management in Burkina Faso and Ethiopia .. 245
The land rights challenge in Mozambique ... 246
Recognizing a human right to water can promote fairer access ... 247
Butterfly farming in Arabuko Forest Reserve .. 248
Mapping landscapes in souther Cameroon .. 249
Rainwater harvesting in Ethiopia .. 249
Enhancing traditional water harvesting practices in Burkina Faso .. 250
Mangrove restoration in Mauritius .. 251
Social learning and knowledge in community-based adaptation strategies ... 252
Managing acid mine drainage in the Olifants catchment 252

Chapter 10: Asia and the Pacific
Selected climate change goal: United Nations Framework Convention on Climate Change Article 3 Paragraphs 1–3 262
Selected biodiversity goal: Convention on Biological Diversity Article 1 ... 263
Selected freshwater goal: Johannesburg Plan of Implementation Paragraph 26c .. 263
Selected goal for chemicals and waste: Johannesburg Plan of Implementation Paragraphs 22 and 23 264
Selected governance goal: Johannesburg Declaration on Sustainable Development Paragraph 5 264
Removing fossil fuel subsidies in Asia and the Pacific 267
Adaptation policies in the Maldives ... 268
Pacific islands: locally managed marine areas 269
Promoting sustainable use of biodiversity: payment for ecosystem services in China and Viet Nam 271
Uzbekistan: improving the capacity of existing reservoirs in Central Asia .. 273
The Yellow River, China: balancing environmental and human needs through quotas and pricing reform 274
Phase-out of ozone-depleting substances in India 275
Ship breaking in South Asia: implementing a new international environmental agreement 277
Low-carbon green growth in the Republic of Korea and China .. 278
Participation in the management of natural resources in India and Nepal .. 279

Chapter 11: Europe
Greenhouse gas reduction pledges for the post-2012 period 295
The German Renewable Energy Feed-in Tariff scheme 298
Transferring innovative climate insurance schemes 298
Stockholm’s air quality management policies in a low-emission zone .. 302
Integrated Tisza River Basin Management Plan 303
Nitrogen accounting in Denmark .. 304
Water metering in Armenia .. 305
Extended producer responsibility ... 306
Ukraine’s national ecological network ... 310
Conserving high nature-value farmland in Portugal 311

Chapter 12: Latin America and the Caribbean
Environmental governance ... 320
Levels of governance in Latin America and the Caribbean 320
Threats to biodiversity in Latin America and the Caribbean 329
Key features of the ecosystem approach to biodiversity management .. 331
Payment for ecosystem services (PES) in support of existing policies ... 332
Key facts about land conditions in Latin America and the Caribbean .. 333
Key facts on land degradation in Latin America and the Caribbean .. 336
Mainstreaming adaptation to climate change in the Caribbean ... 337
Brazil’s Bolsa Verde .. 340
Energy in Latin America and the Caribbean 341

Chapter 13: North America
The Quebec and British Columbia carbon taxes 354
Ontario: a comprehensive approach to energy 355
Maryland’s Smart Growth programme: financial incentives and planning .. 361
Canadian land-use reserves in Ontario and British Columbia: command and control 361
Protection and management of the Great Lakes Basin 363
Texas: a rapid expansion of wind energy 368

Chapter 14: West Asia
Yemen’s integrated water resources management plan 379
Leak detection and repair of the distribution system in Bahrain ... 380
Irrigation management in Saudi Arabia 381
Protection and rehabilitation of rangelands in Syria 383
Sustainable agricultural development in Bahrain 383
Integrated agricultural management in Al-Karak, Jordan 385
Energy conservation in buildings in Kuwait 387
Solar water heaters in Jordan and the Occupied Palestinian Territories ... 389
Coastal and Area Management Programme (CAMP) in Lebanon ... 392
Marawah Biosphere Reserve, Abu Dhabi, United Arab Emirates ... 393
Fish stock enhancement in Bahrain ... 394
The Council of Arab Ministers Responsible for the Environment (CAMRE) ... 395

Chapter 16: Scenarios and Sustainability Transformation
A possible vision of the world on a path towards sustainability in 2050 .. 425
Integrated simulation of the 2050 targets for climate, food and land ... 434
The sustainable world scenario for water withdrawals 437
Integrated global analysis of sustainability scenarios 443
Indonesia’s National Watershed Development Project for Rainfed Areas (NDWPRA) – adaptive governance and policy-making at the sub-national level .. 450

Chapter 17: Global Responses
Diffusion of policy tools worldwide – the case of strategic environmental assessment 465
Identifying financial flows for environmental response466
International aid for the environment.................................468
Response option 1: Framing environmental goals in the context of sustainable development and monitoring outcomes ..471
Response option 2: Enhancing the effectiveness of global institutions ..473
Response option 3: Investing in enhanced capacities for addressing environmental change475
Technology Mechanism at the UNFCCC476
Response option 4: Supporting technological innovation and development ..477
Response option 5: Strengthening rights-based approaches and access to environmental justice479
Social learning ..480
Cities and climate action ...481
Response option 6: Deepening and broadening stakeholder engagement ..482
Anyone wishing to understand the pace and scale of environmental change will find UNEP’s flagship assessment report – *Global Environment Outlook-5: Environment for the future we want* – compelling reading. Equally, anyone seeking a paradigm shift that can bring us closer to a truly sustainable world will find this latest edition of the GEO series rich in opportunities and policy options.

GEO-5 is designed to be the most comprehensive, impartial and in-depth assessment of its kind. It reflects the collective body of recent scientific knowledge, drawing on the work of leading experts, partner institutions and the vast body of research undertaken within and beyond the United Nations system.

The launch of **GEO-5** coincides with the final stages of preparation for the UN Conference on Sustainable Development (Rio+20), taking place two decades after the Rio Earth Summit that set the agenda for contemporary thinking about sustainable development. The report underlines the reasons why world leaders need to show decisive leadership in Rio and beyond. It highlights the state, trends and trajectories of the planet and its people, and showcases more than 100 initiatives, projects and policies from across the globe that are pioneering positive environmental change.

In a world with a growing population, glaring inequality and a precarious environmental base, it is imperative that Governments collaborate to balance the economic, social and environmental strands of sustainable development. **GEO-5** highlights not just the perils of delaying action, but the options that exist to transform sustainable development from theory to reality. I commend **GEO-5** to all who wish to invest in this generational opportunity to create the future we want.

Foreword

BAN Ki-moon
Secretary General of the United Nations
United Nations Headquarters, New York

May 2012
Since the days of the ancient Egyptians, Greeks and Chinese, through the Islamic Golden Age and the Renaissance, philosophers and scientists have sought to make sense of the forces and processes of the natural world and humanity’s place within them. In the past half century or so, this endeavour has accelerated as concerns over the impacts of industrialization have emerged and more recently been fuelled by a growing realization that people – once marginal influencers of environmental change – are now its principal drivers, from biodiversity loss to climate change.

The *Global Environment Outlook: Environment for the future we want (GEO-5)* is part of this broad sweep of history, and is a major contribution to the public understanding of the way ecosystems and the atmosphere are responding to patterns of unprecedented consumption and production – patterns taking place on a planet of 7 billion people, rising to more than 9 billion by 2050. Its findings on the state of the planet, globally and regionally, are unsurprisingly sobering and cause for profound concern – they should serve as a reminder to world leaders and delegates attending the Rio+20 Summit in June as to why they are there.

Bridging the science-policy interface remains problematic – translating the findings of science into environmental law and policy making has been a challenge stretching back through Rio 1992 to the Stockholm Conference on the Human Environment of 1972. Encouragingly, a growing scientific understanding and technological progress have not fallen on deaf ears; they have inspired a myriad of treaties and agreements covering such issues as the trade in endangered species, the protection of the ozone layer, climate change, biodiversity loss and the banning of persistent organic pollutants.

GEO-5 adds new dimensions to the discourse through its assessment of progress towards meeting internationally agreed goals and identifying gaps in their achievement. Out of 90 goals and objectives assessed, significant progress could only be shown for four. Of equal concern, progress could not be appraised for 14 goals and objectives simply because data were lacking.

Another GEO-5 innovation is that it highlights a regional selection of more than a hundred policies and transformational actions that have been tried and tested successfully in countries and communities around the world. These policy options give decision makers tools that could be adapted to their own settings.

Such policy options are part of a broad sweep of emerging work termed the Green Economy, which in the context of sustainable development and poverty eradication is one of the two major themes for Rio+20. The summit is about taking stock and renewing commitments, but it is also about the integration of scientific findings in evidence-based policy making and the re-engagement of society in endeavours to move the world on to a sustainable path.

When nations take stock of sustainable development 20 years after the Rio Earth Summit of 1992, the limited achievements and endemic knowledge divide between North and South should be high on the agenda.

In summary, science must underpin policy making, but as five GEO assessments and reports have shown, it is not enough. Realizing and implementing science-based policies is where the real gap resides, and this can be bridged not by more satellite observations, field monitoring, computations and scenario modeling but by courage, decisiveness and political leadership that matches the reality that GEO-5 confirms.

Achim Steiner
United Nations Under-Secretary General and Executive Director
United Nations Environment Programme
Introduction

THE EARTH SYSTEM CONTEXT
The Earth System provides the basis for all human societies and their economic activities. People need clean air to breathe, safe water to drink, healthy food to eat, energy to produce and transport goods, and natural resources that provide the raw materials for all these services. However, the 7 billion humans alive today are collectively exploiting the Earth’s resources at accelerating rates and intensities that surpass the capacity of its systems to absorb wastes and neutralize the adverse effects on the environment. In fact, the depletion or degradation of several key resources has already constrained conventional development in some parts of the world.

Within the Earth System – which acts as a single, self-regulating system comprised of physical, chemical, biological and human components – the effects of human activities can be detected at a planetary scale (Chapter 7). These have led scientists to define a new geological epoch, the Anthropocene, based on evidence that atmospheric, geological, hydrological, biological and other Earth System processes are being altered by human activity. The most readily recognized changes include a rise in global temperatures and sea levels, and ocean acidification, all associated with the increase in emissions of greenhouse gases, especially carbon dioxide and methane (Chapters 2 and 4). Other human-induced changes include extensive deforestation and land clearance for agriculture and urbanization, causing species extinctions as natural habitats are destroyed (Chapters 3 and 5).

While humans have long been aware of the effects of their activities on the local environment, only in the last few decades has it become apparent that these activities can cumulatively affect the global environment (Chapters 1–7). In the past, anthropogenic pressures on natural resources were less pervasive and the Earth’s atmosphere, land and water could carry the load of human consumption and production. However, in the second half of the 20th century the effects of many diverse local changes compounded at accelerating rates to produce global consequences. Globalization allows goods to be produced under circumstances that consumers would refuse to tolerate in their own community, and permits waste to be exported out of sight, enabling people to ignore both its magnitude and its impacts. However, just as waste has – literally – reached the ends of the Earth, environmental concerns have become globalized as well (Chapter 1).

These threats to the Earth System have led the science community and policy makers to work together more closely to meet the challenge in a sustainable and collaborative manner.

THE SCIENCE-POLICY CONTEXT
At the 1972 United Nations Conference on the Human Environment, 119 nations came together for the first time to discuss serious environmental concerns raised by the scientific and conservation communities. As an initial step, the conference established UNEP to catalyse international and UN-wide environmental action. Twenty years on, the United Nations Conference on Environment and Development in Rio de Janeiro approved Agenda 21, a blueprint for the introduction of sustainable development, a concept first articulated as “satisfying the needs of the present generation without compromising the chance for future generations to satisfy theirs” in the World Commission on Environment and Development 1987 report Our Common Future. In the second decade of the new century, Agenda 21 remains a vibrant and relevant guide with many of its precepts yet to be applied, particularly in regard to consumption.

The 2000 Millennium Summit, which brought world leaders together to discuss the role of the United Nations at the turn of the 21st century, produced eight Millennium Development Goals (MDGs) to make up for shortcomings that resulted from a focus on economic objectives while international development stalled. The MDGs address the integration of sustainable development principles into country policies and programmes and aim to reverse the impoverishment of human and environmental resources, while setting time-bound targets and establishing metrics. MDG 7, which specifically addresses the environment, set targets to make significant reductions in the rate of biodiversity loss by 2010, to halve the proportion of the population without sustainable access to safe drinking water and basic sanitation by 2015, and to achieve a significant improvement in the lives of at least 100 million slum dwellers by 2020.

As understanding has developed about the relationship between human well-being and environmental change, so have the attempts to make it relevant for policy makers. The dependence of social development and economic activity on environmental services and stability is increasingly understood. An economy functions within a society, or within and between societies, using natural and human resources to produce marketable goods and services. At the same time, societies survive and thrive within the environment determined by the physical limits of atmosphere, land, water, biodiversity and other material resources.

Interacting environmental, social and economic forces produce a complex system that has been the focus of substantial research, but it is only in the last two decades that information and communication technologies have enabled researchers to model and explore the intricate complexities of the whole Earth System.

Insights gained from the ability to appreciate the power and nuance of Earth System complexities demand a new perception of the responsibilities and accountabilities of nation states towards planetary stewardship (Chapter 16 and 17). This not only requires the realization of environment and development
goals and targets but also the development of specific goals aimed at global sustainability, addressing the needs of the most vulnerable as well as the wants of the more powerful.

The elaboration of such goals requires scientifically credible indicators and information to guide, track and report progress (Chapter 8). Integrated environmental assessments are tools, within a broad and deep toolkit, that have been developed to meet this need. However, for the most part, policy developments and revisions have failed to adequately incorporate assessment findings and other scientific information into international policy priorities.

BACKGROUND

The main goal of UNEP’s *Global Environment Outlook* (GEO) is to keep governments and stakeholders informed of the state and trends of the global environment. Over the past 15 years, the GEO reports have examined a wealth of data, information and knowledge about the global environment; identified potential policy responses; and provided an outlook for the future. The assessments, and their consultative and collaborative processes, have worked to bridge the gap between science and policy by turning the best available scientific knowledge into information relevant for decision makers.

Previous GEO reports focused on an analysis of environmental issues and the identification of responses, using an integrated approach that provided a comprehensive and multidisciplinary overview across different themes. This fifth *Global Environment Outlook* (GEO-5) builds on previous reports, continuing to provide analyses of the state, trends and outlook for, and responses to, environmental change. But it also adds new dimensions through its assessment of progress towards meeting internationally agreed goals and identifying gaps in their achievement (Chapters 2–6), on analysing promising response options that have emerged in the regions (Chapters 9–15), and presenting potential responses for the international community (Chapters 16–17). Furthermore, for the first time, GEO-5 suggests that there should be a fundamental shift in the way environmental issues are analysed, with consideration given to the drivers of global change, rather than merely to the pressures on the environment.

Details of the process followed by the UNEP Secretariat in developing GEO-5, including the assemblage of more than 600 scientists guided by governmental, scientific and policy advisory bodies, are presented in the GEO-5 Process section.

STRUCTURE

The GEO-5 report is made up of 17 chapters organized into three distinct but linked parts.

Part 1 – State and trends of the global environment

To explore today’s rapidly changing socio-economic conditions, Chapter 1 examines the drivers of environmental change – the overarching socio-economic forces that exert varying degrees of influence, or pressures, on the environment. Chapter 1 identifies and describes these major root causes of the environmental challenges and provides some suggestions for policy interventions.

Using the drivers, pressures, state, impacts and responses (DPSIR) analytical framework (Figure 1), the GEO-5 assessment presents the latest state and trends of the global environment under the themes of atmosphere, land, water, biodiversity and, for the first time in the GEO series, chemicals and waste (Chapters 2–6).

The DPSIR framework is used to identify and evaluate the complex and multidimensional cause-and-effect relationships between society and the environment. The DPSIR framework used in GEO assessments is an extension of the pressure-state-response model developed by the OECD and the European Environment Agency in the mid-1990s. Drivers such as population dynamics, economic demand and unsustainable consumption and production patterns are processes that lead to impacts on the environment. These drivers often directly or indirectly result in environmental pressures including increased emissions of pollutants and wastes and destructive resource extraction. Such pressures cause changes to the environment with concomitant impacts on both humans and ecosystems. The DPSIR analytical framework helps to identify these processes. Finally, it suggests responses, which can take many forms at many scales from community action to international treaties, not only to the underlying drivers, but also to the environmental pressures and their impacts on ecosystems and human health.

Chapters 2–6 evaluate whether a selection of internationally agreed environmental goals are being met for each of the themes; Chapter 7 provides a synthesis of the thematic information from an Earth System perspective. Part 1 concludes with a review of the need to strengthen the collection, analysis and interpretation of data relevant to tracking the state and trends of the environment as a fundamental requirement for further research, for monitoring and evaluation, for scientific assessments, and for effective policy making (Chapter 8).

Part 2 – Policy options from the regions

Part 2 of GEO-5, Chapters 9–14, presents an appraisal of policy options from the regions (Figure 2) that show potential for helping to speed up the accomplishment of internationally agreed goals. This was requested by UNEP’s Governing Council and provides readers wishing to implement successful policies with promising avenues for exploration.

To direct the policy appraisal, multi-stakeholder consultations were undertaken in each region to identify priority environmental challenges and related internationally agreed goals.
Following a screening exercise, policies or policy clusters that either demonstrated a record of success with respect to their associated goals or featured innovative characteristics combined with promising initial results were retained and analysed in further detail. The policy appraisal was based on literature review, documented case studies and expert opinion. It was not always possible to apply a consistent appraisal methodology due to the multi-faceted and non-quantifiable elements of some of the internationally agreed goals and the multi-dimensional and cross-cutting nature of the co-benefits and trade-offs of the policies. Consistency of approach was also hampered by a lack of underlying data and indicators.

Figure 1 The GEO-5 DPSIR conceptual framework

The appraisal explored the benefits of the policies and the enabling conditions that facilitated their adoption or success. Other characteristics that were analysed include the monitoring and tracking of environmental, economic or social outcomes; cross-cutting effects on other priority themes and internationally agreed goals; and the potential for their application in new contexts.

Each region identified policy responses that were effective and potentially suitable for replication and/or adoption in other countries. Some highly promising approaches featured in the regional chapters are worthy of closer analysis and possible testing by governments.

The regional summary at the end of Part 2 (Chapter 15) presents an overview of the priority environmental challenges selected by the regions; a discussion on commonalities, challenges, and opportunities; and a summary of the policy options.

Part 3 – Opportunities for a global response

The final part of GEO-5 begins with an analysis of the type of actions required to reach a sustainable world. It first reviews existing environmental treaties and internationally agreed goals to construct a possible vision for 2050 with specific goals and targets. Next, existing scenario studies are reviewed in the context of two possible categories: conventional world scenarios that depict possible development if present trends continue and, second, global scenarios that aim to achieve a sustainable world. The analysis that follows identifies a range of measures that could enable the world to reach the sustainable development targets identified by GEO-5. Achieving these targets, however, requires radical departure from current trends. To account for the interactions of policies across sectors in the dense and interlinked system of global activities, an integrated sustainable world scenario is included in the analysis to examine the extent and complexity of policy changes needed to achieve the vision for 2050 (Chapter 16).

Chapters 16 and 17 review the state of knowledge of how public institutions, the private sector and civil society could generate effective and efficient responses to environmental change. While many responses at national and regional levels have successfully put societies on trajectories that are beginning to address some of these challenges, the analysis confirms that global environmental change cannot be addressed successfully by any single approach.

GEO-5 concludes by identifying action to undertake at the global level, combined with relevant national applications where appropriate, to enable the adoption of truly transformative policies – as well as the legal, institutional and policy frameworks required to make them successful. GEO-5 will provide the reader not only with an understanding of the complexity of the threats humanity faces, but possible policy solutions and transformative pathways to a sustainable future.

The GEO-5 process contributes to UNEP’s mission of providing leadership and encouraging partnership in caring for the environment by inspiring, informing, and enabling nations and peoples to improve their quality of life without compromising that of future generations. To facilitate its development the Earth was divided into regions which largely reflect the concerns and remits of the six UNEP’s Regional Offices, and allowed them to provide regional support to the working teams preparing GEO-5. A full breakdown of the regions, sub-regions and their respective nation states can be found on the Environmental Data Explorer (formerly the GEO Data Portal), at www.unep.org/geo/data.

Figure 2 UNEP regions
